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Abstract 

 

     The purpose of this paper is to extend the RSA 

public-key encryption scheme from its classical domain 

of natural integers Z, to two principal ideal domains, 

namely the domain of Gaussian integers, Z[i], and the 

domain of polynomials over finite fields, F[x].  The 

arithmetic needed for the modifications to these 

domains are described. The modified RSA algorithms 

are given. Proofs for the new method are provided. The 

computational procedures are described and illustrated 

in numerical examples. The advantages of new scheme 

over the classical are pointed out. 
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1 Introduction 
 

     The RSA public-key cryptosystem scheme [11], 

invented by Rivest, Shamir, and Adleman, is the most 

popular and widely used public-key cryptosystem. Its 

security is based on the intractability of both the integer 

factorization problem and the RSA problem. The RSA 

problem, see [9], is the problem of finding an integer m 

such that m
e
 ≡ c (mod n), where n is a product of two 

distinct large odd primes p and q, e is a positive random 

integer such that gcd(e,(p−1)(q−1)) = 1, and c is any 

integer. That is, the RSA problem is that of finding e
th

 

roots of an integer c modulo a composite integer n.  

 

     The classical RSA cryptosystem is described in the 

settings of the ring Zn, the ring of integers modulo a 

composite integer n = pq, where p and q are two 

distinct odd prime integers. Many aspects of arithmetic 

over the domain of integers can be carried out to the 

domain of Gaussian integers Z[i], the set of all complex 

numbers of the form a + bi, where a and b are integers, 

and to the domain of polynomials over finite fields F[x]. 

Recently, El-Kassar et al. [4] modified the ElGamal 

public-key encryption schemes from its classical 

settings of the domain of natural integers to the domain 

of Gaussian integers by extending the arithmetic needed 

for the modifications to the domains. A similar 

extension to the domain F[x] was given by El-Kassar 

and Haraty [5]. Haraty et al. [8] gave a comparative 

study of the extended ElGamal cryptographic 

algorithms.  

 

     In this paper, we present two extensions of the RSA 

cryptosystem in the domain of Gaussian and the domain 

of polynomials over finite fields by extending the 

computational procedures behind the RSA public-key 

cryptosystem using arithmetic modulo a Gaussian 

integer and arithmetic modulo a polynomial. First, we 

review the classical RSA public-key cryptosystem. 

Then, we modify the computational methods in the 

domain of Gaussian integers and the domain of 

polynomials over finite field. Finally, we show how the 

modified computational methods can be used to extend 

the RSA algorithm to these domains. Also, we show 

that the extended algorithms require a little additional 

computational effort than the classical one and 

accomplish much greater security. 

 

 

2  Classical RSA Public-Key  Cryptosystem 

 

     The RSA cryptosystem is described as follows:  

entity A generates the public-key by first generating two 

large random odd prime integers p and q, each roughly 

of the same size. Then, entity A computes the modulus 

n = pq and φ(n) = (p − 1)(q − 1), where φ is Euler’s phi- 

function. Next, entity A selects the encryption exponent 

e to be any random integer in the interval (1, φ(n)), and 

which is relatively prime to φ(n). Using the extended 

Euclidean algorithm for integers, entity A finds the 

decryption exponent d, which is the unique inverse of e 

in Zn. The public-key is the pair (n, e) and A’s private-

key is the triplet (p, q, d).  

 

     To encrypt a message, entity B first represents the 

message as an integer m in Zn. Then, entity B obtains 



A's public-key (n, e) and use it to compute the cipher 

text c ≡ m
e
 (mod n) and sends c it to entity A. Now, to 

decrypt c, entity A computes m ≡ c
d
 (mod n) and 

recovers the original message m. 

 

Example1. In order to generate the public-key, entity A 

selects the artificially small primes p = 883 and q = 709. 

Then A computes the modulus n = 626047 and φ(n) = 

624456. Next, A chooses encryption exponent e = 

333853 and finds the decryption d = 97213 using the 

extended Euclidean algorithm for integers. Therefore, 

the public-key is (626047, 333853) and the private-key 

is (883, 709, 97213). Now, to encrypt the 10-bit 

message 1001110001, entity B represents the message 

in decimal notation as m = 625 in Zn, B computes  

c ≡ 625
333853 

(mod 626047) = 274608  

and sends it to A. Finally, to decrypt c, A uses the 

decryption algorithm to get the original message  

m ≡ 274608
97213 

(mod 626047) = 625. 

 

 

3 Arithmetic in Z[i] 

 

     The domain of Gaussian integers Z[i] is the subring 

of the field of complex numbers consisting of all 

elements of the form a + bi, where a and b are integers 

and i = 1− . For a Gaussian integer γ = a + bi, let δ(γ) 

= a
2 

+ b
2
 be the norm of γ. We say that a nonzero 

Gaussian integer β divides a Gaussian integer α if there 

γ ∈ Z[i] such that α = γβ. If β divides α in Z[i] then 

δ(β) divides δ(α) in Z. A Gaussian integer β is said to 

be invertible, or a unit, if there is if there γ ∈ Z[i] such 

that 1 = γβ; i.e., β divides 1. The units or invertible 

elements of Z[i] are 1, −1, i, and −i. Two elements α 

and β in Z[i] are called associates, denoted by α ~ β , if 

one is a unit multiple of the other. For instance, the 

associates of 1+2i are −1−2i, 2−i and −2+i.  

 

     A nonzero nonunit Gaussian integer β is called 

prime provided that β divides γ or β divides α whenever 

β divides αγ.  It is well-known that β is a prime if and 

only if β has no proper divisors, that is, the only 

divisors of β are the units and the associates, see [6]. 

Also, if δ(γ) is prime in Z then γ must be a prime in 

Z[i]. The Gaussian primes of Z[i], up to associates, see 

[8] or [10], are of the form:  

i) α = 1 + i;  

ii) π = a + bi and π  = a − bi, where π π  is an odd 

prime integer q of the form 4k + 1; 

iii) p, where p is an odd prime integer of the form 

4k + 3. 

Note that π and π  in (ii) are not associates. 

 

     The domain of Gaussian integers is a factorization 

domain in which every nonzero nonunit element can be 

expressed as a product of primes. Moreover, this 

decomposition is unique up to the order and associates 

of the primes. For β ∈ Z[i], the ideal generated by β  is 

<β> = βZ[i] = {βγ | γ∈ Z[i] }. The coset of a Gaussian 

integer α modulo <β>, denoted by α+<β> or [α], is the 

set  α +<β> = [α] = {α+ γ | γ∈<β>}. Two cosets 

α+<β> and γ +<β> are equal if and only if α−γ∈<β>; 

in this case both α and γ are representative of the same 

coset. The quotient ring of Z[i] modulo <β>, denoted 

by Z[i] /<β> or Gβ, is the set of all cosets of <β>.  It is 

well-known that Z[i] /<β> is a ring, see [7]. A complete 

residue system modulo β, denoted by A(β), is any 

complete set of distinct representatives from Z[i]/<β>. 

 

     Two Gaussian integers α and β, are congruent 

modulo a nonzero Gaussian integer η, written as α≡β 

(mod η), if α−β divides η. The relation ≡ modulo η is 

an equivalence relation. The congruence classes are the 

cosets of <β>. We identify Gβ with the complete 

residue system modulo β so that Gβ is a ring under 

addition and multiplication modulo β. For example, 

when β  = 1 + 2i, then  

 

Z[i]/<1+2i> = {[0],[1],[2],[3],[4]} = G1+2i.  

 

This ring is identified by G1+2i = {0, 1, 2, 3, 4}.  

 

     We define the function q(β) to be the order of the 

quotient ring Z[i] /<β>. Now, q(βγ) = q(β)q(γ), see [2] 

or [3]. J.T. Cross [2] gave a full description for 

complete residue systems modulo prime powers of 

Gaussian integers. In particular, when p is a Gaussian 

prime of the form 4k+3,   

 

Gp = { a+bi  | 0 ≤ a ≤ p−1, 0 ≤ b ≤ p−1}, 

and when π is a factor the odd prime q = π π  with q of 

the form 4k+1,  

Gπ = { a | 0 ≤ a ≤ q−1}. 

For any two nonzero elements γ and β of Z[i], a 

complete set of residue system modulo γβ, see [3], is 

the set  

A(γβ) = {s + r γ : s ∈ A(γ), r ∈ A(β)}.  

 

     A greatest common divisor of two Gaussian integers  

α and β is a divisor γ = a + bi of both elements α and β 

and any other common divisor divides γ. Any two 

greatest common divisors α and β are associates so α 

and β have four greatest common divisors. The greatest 

common divisor α and β, denoted by gcd(α, β), is the 

greatest common divisor γ = a + bi with a, b ≥ 0. The 

gcd(α, β) can be written as  

gcd(α, β) = α γ + β λ,  

where the unique coefficients  γ  and λ can be obtained 

by the extend Euclidean algorithm for Gaussian 

integers.   

 

     For a Gaussian integer β, let 
*
βG  be those elements 

of Gβ that are relatively prime to β; i.e.,  
*
βG = {α∈ Gβ | gcd(α,β) = 1}. 



The set 
*
βG  is called a reduced residue system modulo 

β and is the group of units of Gβ. When β is a Gaussian 

prime, Gβ is a field and 
*
βG  is the set of nonzero 

elements in Gβ. The number of elements in any reduced 

residue system 
*
βG , denoted by φ(β), is Euler’s phi 

function in Z[i], see [2] or [3]. The φ function is a 

multiplicative function; i.e., φ(αβ) = φ(α)φ(β). Also, for 

a prime power Gaussian integer, the value of the φ 

function is  

φ(αn
) = 2

n − 2
n−1

,  

φ(πn
) = q

n−1
(q − 1), 

or 

φ(p
n
) =  p

2n−2
(p

2 − 1). 

 Thus, the value of φ for any Gaussian integer β can be 

obtained from the prime power decomposition of  β. 

 

 

4 Modified RSA In Z[i] 

 

    In the domain of Gaussian integers the RSA public-

key scheme is described as follows. Entity A generates 

the public-key by first generating two large random 

Gaussian primes β and γ and computes η = βγ. If β = π1 

and γ = π2, then the complete residue system modulo η 

has an order equal q1q2 = ( )( )2211 ππππ , see [3]. This 

choice yields a message space having an order same as 

that of the classical case; i.e,  

2121 qqGG Z== ππβγ = q1q2.  

Moreover, the order 
*
βγG is   

*
βγG = φ(η) = φ(β)φ(γ)  

          =  (q1−1)(q2−1) = 
*

21qqZ .  

Hence, the length of interval for the exponent e is 

(β−1)(γ−1). 

 

     If β = π1 = a+bi and γ is an odd prime of the form 

4k+3, then the factorization problem of the composite 

Gaussian integer η = βγ = aγ+bγi is easy to solve. This 

choice is excluded.  

 

     If β and γ are both of the form 4k + 3, then the 

complete residue system modulo η = βγ is of the form  

Gη = {r+s β | r∈Gβ and s∈Gγ}. 

It can be shown that this set is precisely  

Gη = {a+bi | 0 ≤ a ≤ βγ −1, 0 ≤ b ≤ βγ −1}. 

Note that the order of Gη is β2γ2
 and that of 

*
ηG  is φ(η) 

= φ(β)φ(γ) = (β2−1)(γ2−1). In this case, the message 

space is enlarged so that its order is the square of that of 

the classical case; that is, 
2

βγβγ = ZG .  Moreover, the 

length of interval for the exponent e is enlarged from 

(β−1)(γ−1) to (β2−1)(γ2−1). 

 

     Now, entity A selects a random integer e and 

determines its unique inverse d ∈ Gη, where gcd(e,φ(η)) 

= 1 and 1 < e, d < φ (η). This is done by applying the 

extended Euclidean algorithm and writing gcd(e, φ(η)) 

= 1 as ex + φ(η)y so that d ≡ x(mod φ(η)).  The public-

key is (η, e) and the private-key is (β, γ, d).  

 

     To encrypt the message m chosen from Gη, entity B 

first uses the public-key to compute the cipher text c ≡ 

m
e
 (mod η) and sends it to A.  

 

     To decrypt the sent cipher text c, entity A uses the 

private-key d to recover the original message by m ≡ c
d
 

(mod η). In the following theorem, we prove that the 

decryption scheme actually works.  
 

Theorem 1. Let η be a Gaussian integer and let m, a 

∈Gη. Suppose that e is an integer, 1< e < φ(η), gcd(e, 

φ(η))=1, and d is the inverse of e modulo φ(η). If c ≡  m
e
 

(mod η) and a ≡ c
d
 (mod η), then a = m.  

 

Proof: Let η be a Gaussian integer and let m ∈Gη. 

Suppose that e is an integer with gcd(e, φ(η)) = 1 and    

1 < e <φ(η). Let d be the inverse of e modulo φ(η) so 

that  

ed ≡ 1 (mod φ(η)), 

 and 1 < d <φ (η). Since ed ≡ 1 (mod φ(η)) in Gη, there 

exists an integer k so that ed = 1 + kφ(η). Suppose that   

c ≡  m
e
 (mod η)  

and  

a ≡ c
d
 (mod η).  

Now, we have two cases to discuss. 

 

Case 1: Suppose that gcd(m, η) = 1. Then m∈
*
ηG  and 

by applying Lagrange theorem for finite groups or by 

using an extension to Euler's theorem to the domain of 

Gaussian integers, see [1], we have  

m
φ(η)

 ≡ 1 (mod η). 

Then,  

a ≡ c
d
 ≡ (m

e
)

d
  

   ≡ m
1+kφ( η )

  

   ≡ m.(m
φ(β)

)
k
 ≡ m          (mod η).  

Hence, a ≡ m (mod η). Since both a and m belong to the 

same complete residue system modulo η and a ≡ m 

(mod η), we conclude that a = m. 

 

Case 2: Suppose that gcd(m, η) ≠ 1, then gcd(m, η) = β, 

gcd(m, η) = γ, or gcd(m, η) = η. If gcd(m, η) = η, then  m 

≡ 0 (mod η) so that c = a = m = 0.  

 

     Suppose that gcd(m, η) = β. Then, m ≡ 0 (mod β). 

Any power of m keeps the congruence true. Thus,    

m
1+kφ(β)

 ≡ 0 ≡ m    (mod β).   

Now, gcd(m, η) = β implies that gcd(m, γ) = 1 and  

m
φ(γ )

 ≡ 1 (mod γ) 

so that  

m
1+kφ(η)

 ≡ m
1+kφ(γ )φ( β)

  

            ≡ m.(m
φ( β)

)
 kφ(γ )

  

            ≡ m   (mod γ).   



Since ed = 1 + kφ(η), we have that  

deed mmm )(≡≡  (mod β), 

and  
deed mmm )(≡≡  (mod γ). 

Hence,  

c
d
 ≡ m    (mod β), 

and  

c
d
 ≡ m    (mod γ). 

Since both β and γ are two distinct Gaussian primes 

with (β, γ) = 1, then we have that  

c
d
 ≡ m    (mod η).  

Finally, since both a and m belong to the same complete 

residue system modulo the Gaussian integer η, we 

conclude that a = m.  

 

     The case when gcd(m, η) = η is similar to that of 

gcd(m, η) = β. ■ 

 

     In the following we provide the algorithms for the 

RSA crytosystem in Z[i]. 

 

Algorithm 1: (RSA Gaussian public-key generation). 

1. Generate two distinct large random Gaussian 

primes β and γ. 

2. Compute η and φ(η). 

3. Select an integer e in the interval [2, φ(η)−1]. 

4. Use the extended Euclidean algorithm to determine 

its inverse d modulo φ(η). 

5. The public-key is (η, e) and the private-key is 

(β,γ,d). 

 

Algorithm 2: (RSA Gaussian public-key encryption)} 

1. Obtain the authentic public-key. 

2. Represent the message as an integer m in Gη. 

3. Compute c ≡ m
e
 (mod η) and send it to A. 

 
Algorithm 3: (RSA Gaussian public-key decryption)} 

1. Use the private-key d to recover m ≡ c
d
 (mod η). 

 

Example 2. Let β = 27743 and γ = 23291 be two 

Gaussian primes of the form 4k + 3. Compute the 

product  

    η = βγ = 646162213  

and  

φ(η) = 417525604196912640.  

Note that, had we used the classical RSA, n = 

646162213 and φ(n) = 646111180. Now, Entity A 

chooses the integer  

e = 16471875800465191, 

and uses the extended Euclidean algorithm for integers 

to find  

d = 200851669617899671 

 such that ed = 1 in Gη. Hence, A’s public-key is the pair 

(646162213, 16471875800465191), and A’s s private-

key is the triplet (27743,23291, 200851669617899671).  

 

     Suppose that entity B wants to encrypt the message 

1001110001. This representation can be regarded as a 

base 1+i representation the Gaussian integer. This 

message can be converted to m = 9 + 4 i. Entity B 

computes the Gaussian integer m
e 
in Gη to get 

 m
e
 = (9 + 4 i) 

16471875800465191
  

     ≡ 636415678 + 168717186 i (mod η). 

Hence, Entity B sends the ciphertext  

                 c = 495038485 + 372009420 i  

in Gη entity A.  

To decrypt the cipher text c, entity A computes  

c
d
 = (495038485 + 372009420 i)

 d
  

    ≡ 4 + 9 i   (mod η)  

and gets the original message m. 

 

 

5 RSA Polynomials Cryptosystem  

 

Given a prime number p and a polynomial f(x) of 

degree n in the finite field Zp[x] as a product of two 

distinct irreducible polynomials in Zp[x], that is f(x) = 

h(x)g(x), where h(x) is of degree s and g(x) is of degree 

r. The quotient ring of Zp[x] modulo the ideal generated 

by f(x), denoted by Zp[x]/< f(x)>, consists of congruence 

classes of polynomials of degree less than that of f(x). 

The ring Zp[x]/< f(x)> is finite of order pⁿ isomorphic to 

the direct sum of Zp[x]/<h(x)> and Zp[x]/<g(x)>; that is, 

  

 Zp[x]/< f(x)> ≅ Zp[x]/<h(x)> ⊕ Zp[x]/<g(x)>. 

 

Hence, the group unit U(Zp[x]/< f(x)>) is isomorphic to 

the direct product of U(Zp[x]/<h(x)>) and 

U(Zp[x]/<g(x)>); that is,  

  U(Zp[x]/< f(x)>) ≅U(Zp[x]/<h(x)>) ×U(Zp[x]/<g(x)>). 

Since h(x) and g(x) are irreducible, the quotient rings 

Zp[x]/(<h(x)>) and Zp[x]/<g(x)> are finite fields of 

order p
s
 and p

r
 , respectively. Also, the groups of units 

U(Zp[x]/<h(x)>) and U(Zp[x]/<g(x)>) are cyclic and of 

order φ(h(x)) = p
s
 −1 and φ(g(x)) = p

r−1, respectively. 

    Now, given a positive integer e such that (e, φ(f(x))) 

= 1 and a polynomial m(x), find a polynomial c(x) such 

that c(x) ≡ m(x)
e
(mod f(x)) in Zp[x]. The polynomials 

h(x) and g(x) should be selected so that factoring f(x) = 

h(x)g(x) is computationally infeasible. 

    In the following we present three algorithms for the 

RSA public-key encryption scheme over polynomials. 

To create an RSA public-key and a corresponding 

private-key, Entity A should do the following: 

 

Algorithm 4: (RSA polynomials key generation). 

1. Generate a random odd prime integer p. 

2. Generate two irreducible polynomial h(x) and g(x) 

in Zp[x]. 

3. Reduce the polynomial f(x) = h(x)g(x) in Zp[x]. 

4. Compute φ(f(x)) = (p
s
 − 1)( p

r
 − 1) the order of 

U(Zp[x]/<f(x)>).  

5. Select an integer e in the interval [2, φ(f(x))−1] 

such that (e, φ(f(x))) = 1. 

6. Use the extended Euclidean algorithm to determine 

its inverse d modulo φ(f(x)). 

7. A's public-key is (p, f(x), e), A's private-key is      

(p, d, g(x), h(x)). 



 

The following algorithm shows how entity B encrypts a 

message m(x) for A. Entity B should do the following: 

 

Algorithm 5: (RSA polynomials encryption) 

1.  Receive A's authentic public-key (p, f(x), e). 

2.  Represent the message as a polynomial m(x) in the 

complete residue system modulo f(x) in Zp[x]. 

3. Compute the polynomial c(x) ≡ m(x)
e 
(mod f(x)) in 

Zp[x]. 

4. Send the ciphertext c(x) to A. 

 

The following algorithm shows how entity A decrypts 

the sent ciphertext c(x) and recovers the real message 

m(x). Entity A should do the following: 

 

Algorithm 5: (RSA polynomials decryption) 

1. Receive the ciphertext c(x) from B. 

2. Use the private-key d to recover m(x) by reducing 

c(x)
d 
(mod f(x)) in Zp[x]. 

 

Let a(x) be a polynomial in the complete residue system 

modulo f(x) in Zp[x]. If a(x) ≡ c(x)
d
(mod f(x)), then a(x) 

= m(x). 

 

In the following theorem, we prove that the decryption 

scheme actually works.  
 

Theorem 2. Let a(x) be a polynomial in the complete 

residue system modulo f(x) in Zp[x]. If a(x) ≡ c(x)
d 
(mod 

f(x)), then a(x) = m(x). 

 

Proof: Let a(x) be a polynomial in the complete residue 

system modulo f(x) in Zp[x] such that a(x) ≡ c(x)
d 

(mod 

f(x)). Since e.d ≡ 1(mod φ(f(x))), then there exists an 

integer k such that e.d = 1+kφ(f(x). Suppose that 

gcd(m(x), f(x)) = 1. Then 

 

 a(x)  ≡ c(x)
 d
 (mod f(x)) 

  ≡ (m(x)
e
)

d 
(mod f(x)) 

  ≡ m(x)
ed 

(mod f(x)) 

  ≡ m(x)
1+kφ(f(x)) (mod f(x)) 

  ≡ m(x).m(x)
kφ(f(x)) (mod f(x)) 

 

Since gcd(m(x), f(x)) = 1, Euler's theorem gives that 

 m(x)φ(f(x)) ≡ 1
 
(mod f(x)) 

and 

 a(x) ≡ m(x)(mod f(x)).  

 

Now suppose that gcd(m(x), f(x)) ≠ 1. Then, either 

gcd(m(x), f(x)) = f(x), gcd(m(x), f(x)) = g(x) or gcd(m(x), 

f(x)) = h(x). If gcd(m(x), f(x)) = f(x), then  

 

    m(x) ≡ 0 ≡ m(x)
ed

 (mod f(x)) 

             ≡ c(x)
d
 ≡ a(x)  (mod f(x)). 

 

If gcd(m(x), f(x)) = g(x), then g(x) divides m(x) and 

 

    m(x) ≡ 0 ≡ m(x)
ed

 (mod g(x)) 

             ≡ c(x)
d
 ≡ a(x)  (mod g(x)). 

 

Since gcd(m(x), f(x)) = g(x) and gcd(m(x), f(x)) ≠ f(x), 

we have gcd(m(x), h(x)) = 1.  Now   

 e.d = 1+kφ(f(x)) = 1+k(p
s
 − 1)( p

r
 − 1) 

       = 1+k’ ( p
r
 − 1) = 1+k’φ(h(x)).   

Hence,   

 a(x)  ≡ c(x)
 d
 (mod h(x)) 

  ≡ m(x)
ed 

(mod h(x)) 

  ≡ m(x)
1+k’φ(h(x)) (mod h(x)) 

  ≡ m(x).m(x)
k’φ(h(x)) (mod h(x)) 

 

 Since gcd(m(x), h(x)) = 1, Euler's theorem gives that 

 m(x)φ(h(x)) ≡ 1
 
(mod h(x)) 

and 

 a(x) ≡ m(x)(mod h(x)). 

 

Since h(x) and g(x) are two distinct irreducible 

polynomials belonging to the ring Zp[x], which is a 

principle ideal domain, it follows that h(x) and g(x) are 

prime polynomials. Therefore, 

   a(x) ≡ m(x)(mod g(x)) and a(x) ≡ m(x)(mod h(x)) 

implies that a(x) ≡ m(x)(mod f(x)). A similar argument 

shows that a(x) ≡ m(x)(mod f(x)) when gcd(m(x), f(x)) = 

g(x). Hence, the last congruence is always true. Finally, 

since m(x) and a(x) belong to the same complete residue 

system modulo f(x) in Zp[x], we have that a(x) = m(x). ■ 

 

    Next we present an example illustrating the RSA 

scheme over polynomials. 

 

Example 3. (RSA polynomials encryption with small 

parameters) 

    Let p = 101. Entity A chooses the two irreducible 

polynomials h(x) = 18x² + 71x + 88 and g(x) = 28x³ + 

83x² + 3x + 95 in Z101[x]. Reducing the polynomial f(x) 

= h(x)g(x) in Z101[x], we get f(x) = 100x⁵+ 48x⁴+28x³+ 

36x² + 40x + 78. Compute φ(f(x)) = (101³ −1)(101² −1) 

= 10509060000. Then, entity A chooses the integer e = 

2580882461 such that (e , φ(f(x))) = 1 and 1 < e < 

φ(f(x)). Using the extended Euclidean algorithm for 

integers to find d = 4894193141 such that ed ≡ 1(mod 

φ(f(x))) in Z101[x]. Hence, A's public-key is 

 

(p = 101, f(x) = 100x⁵+ 48x⁴+ 28x³ + 36x² + 40x + 78,  e 

= 2580882461) 

 

 and A's private-key is 

 

(p = 101, d = 4894193141, g(x) = 28x³ + 83x² + 3x + 95, 

h(x) = 18x² + 71x + 88). 

 

To encrypt the message m(x) = 1 + x + 3x², entity B 

reduces the polynomial 

 

 c(x) = m(x)
e 
= (1 + x + 3x²)

2580882461 

  ≡  8x⁴+ 98x³ + 39x² + 90x +40 (mod f(x)) 

 

in Z101[x] and sends it to entity A. 

 



    To decrypt the ciphertext c(x) = 8x⁴+ 98x³ + 39x² + 

90x + 40, A reduces 

 

a(x)  = c(x)
d 
= (8x⁴ + 98x³ +39x² + 90x + 40)

4894193141 

  ≡ 1 + x + 3x² (mod f(x)) 

 

 in Z101[x] to recover the original message m(x). 

 

5 Conclusion 

      Arithmetic needed for the RSA cryptosystem in the 

domains of Gaussian integers and polynomials over 

finite fields were modified and computational 

procedures were described. There are advantages for the 

new schemes over the classical one. First, generating 

the odd prime numbers in both the classical and the 

modified methods requires the same amount of efforts. 

Second, the modified method provides an extension to 

the range of chosen messages and the trials will be more 

complicated. This is due to the fact that the complete 

residue system Zn has pq elements, while the complete 

residue system Gη has δ(η) = p
2
q

2
 elements and the 

complete residue system Zp[x]/<f(x)> has p
s
p

r
 elements. 

Third, in Zn,, Euler phi function is φ(n) = (p − 1)(q − 1), 

in Z[i] is φ(η) = (p
2
 − 1)(q

2
 − 1), and in Zp[x]/<f(x)> is 

φ(f(x)) = (p
s
 − 1)( p

r
 − 1) so that an attempt to find the 

private key d from the public key (RSA problem) is 

more complicated. Finally, we note that the 

computations involved in the modified methods do not 

require computational procedures that are different from 

those used in the classical method.  
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